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Air pollution models have not so far been able to reproduce satisfactorily ground level
concentrations because the influence of important variables is not perfectly described. For example,
it is recognised that deterministic models cannot provide an adequate correlation between hourly
predictions and observed data paired in time and space. From another point of view, the
concentration levels forecast by a supervised Neural Net model (Faussett, 1994) have to take
account of the influence of the variables of the system, such as source emission factors, turbulence
conditions, local topology, reactions rate, by using an appropriate training on the available
experimental data.
The proposed approach relies on the development of an integrated model that optimises the
performances of each methodology. In particular, we filter the concentrations evaluated by an air
pollution model with a Neural Net so as to account for the systematic influence of important
variables.
We have applied the Neural filter to a puff model (SPM: Skewed Puff Model) based on the Monin-
Obukhov similarity theory, where continuously emitting sources are represented by the
superposition of a series of puffs. The model utilises approximate solutions proposed by van Ulden
(1992) for the dispersion of a cloud of passive contaminants released from an instantaneous source
near the ground. Particular importance is attributed to describing the interaction between wind
shear and vertical diffusion and to the process that transforms shear-produced skewness into
diffusive variance in the wind direction. The equations describing the concentration field can be
found in Tirabassi and Rizza (1995).
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In forecasting with neural networks, the most popular tool is provided by multilayer perceptrons
with an error-backpropagation supervised learning rule (Rojas, 1996). This net architecture is able
to reproduce non linear models, without any ����
��
 assumptions, by means of an accurate choice
of the variables of the system and of the meaningful  patterns.
A learning algorithm is an adaptive method by which a network of computing units self-organises
to reproduce the desired model. This is done in learning algorithms by presenting some examples of
the desired input-output mapping to the network. A correction step (the error-backpropagation rule)
is performed iteratively until the network learns to produce the desired response.
As architecture we used a 3-layer perceptron model. The first input� layer contains the input
variables of the� net, in our case atmospheric turbulence through U* (friction velocity) and L
(Monin-Obukhov length), the distance of the receptor from the source (X), and the concentration
levels predicted by the model. The real novelty of the proposed methodology lies in the choice of
the latter variable: in fact, the inclusion of the predicted model concentrations as input values of the
network means that it must perform a twofold task. The first of these is to start from a situation
close to reality (insofar as any dispersion model will provide a response to different conditions of
turbulence and emission). The second, and conceptually more important task is linked to the fact



7th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes

180

that models perform well under certain hypotheses, while tending systematically to differentiate in
performance when reality falls short of the ideal situations. In this case, the NN functions as a filter
of the model, correcting it so that it can give the best reproduction of the real situation.
The second layer consists of the neurons of the hidden layer. The number of neurons of the hidden
layer is one of the parameters to be chosen in the perceptron model and was estimated from the
number of the clusters present in the data set.
The third layer is the output layer, which consists of the target of the forecasting model.
As the activation function of the single neurons, we chose the sigmoid�function:
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where P is the activation�potential and S is the activation threshold.
The model optimisation mechanism takes place through the automatic update of the weights. The
update of weights among neurons is guided by the following function:
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and E provides a quantification of the overall difference over all the examples and for all the
reproduced variables.
In the present work, we used the conjugate gradient method for weight correction, as it was judged
to be best for identifying the absolute minima of the function E.
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We evaluated the performances of the SPM model in the cases of an emission source near the
ground, using the well known data set of the Prairie Grass experiment (Barad, 1958), as well as an
elevated source, using the Copenhagen data set (Gryning and Lyck ,1984). Generally speaking, the
distributed data set contains hourly mean values of concentrations and meteorological data.
However, for this model validation, we were able to use data with a greater time resolution, kindly
made available to us by Gryning. In particular, we used 20-minute averaged measured
concentrations and 10-minute averaged values for meteorological data.
The perceptron model used for the two simulations is made up of a 3-layer architecture with 4
neurons in the input layer (containing the variables U*, L, X and CSPM), 9 neurons in the hidden
layer and one output neuron (containing the concentration levels to be reproduced).
Given the  low number of patterns available (60 for the Copenhagen data set and 167 for the
Prairie Grass data set), all the data were used during the training phase for the two simulations. To
optimise learning, the two nets were trained using respectively the following pairs of values for the
learning parameter and for momentum for four different training phases: (0.4, 01); (0.3, 0.4); (0.2,
0.5);
(0.1, 0.6)
Each phase consisted of 500 patterns, so that the results obtained were eventually found after 2000
examples.
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In order to assess the reproducibility of the concentration levels, we calculated the percentage of
difference between the levels calculated by the two models and the experimental ones:
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A comparison between the performances of the dispersion model and the new proposed
methodology is shown in Table 1, which reports the squared correlation coefficients (R2) between
the measured and reproduced concentration levels. The values are relative to Figures 1 and 2 for the
Copenhagen and Prairie data sets.
As can be seen from the correlation coefficient values, the levels of concentration reproduced for
both data sets show a marked improvement when the neural network is added downstream of the
dispersion model.
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 � Praire dataset: Comparison between measured concentrations levels vs SPM model and SPM+RN
model.

For both data sets, the SPM model produces underestimations. In fact, the mean value of reproducibility
for the dispersion model is –45.77% for the Prairie data set and –16.01% for the Copenhagen one.
Applying the neural net one sees a clear improvement of the concentration levels, with mean values of
reproducibility of –6.95 and –0.80 for the Prairie and Copenhagen data sets respectively.
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Values of the correlation (R2 and Bias) and mean value (m) and standard deviation (σ) of the
distribution of reproducibility of concentration levels (∆C(%)).
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Using the results of a dispersion model, the reproduced concentration levels were evaluated for two
typical calibration data sets. The model reproduces concentration levels with a precision that is not
always optimal.
Given this fact, a neural net was trained on the basis of the meteorological situation and the values
for the pollutant levels reproduced by the model.
Applying this methodology, the ground level concentrations indicate an improvement in the predictive
capacity of dispersion models, when appropriately filtered by a neural net. Notwithstanding the limited
nature of the example dealt with here, the proposed methodology can be generalised, thus opening new
perspectives for integrated models in the simulation of complex situations.

Figure 2 Copenaghen dataset: Comparison between measured concentrations levels vs SPM
model and SPM+RN model.
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